Search results for "Hypersaline lake"
showing 3 items of 3 documents
Distribution, redox state and (bio)geochemical implications of arsenic in present day microbialites of Laguna Brava, Salar de Atacama
2018
Understanding how microorganisms adapted to the high arsenic concentration present on early Earth requires understanding of the processes involved in the arsenic biogeochemical cycle operating in living microbial mats. To this end, we investigated a living microbial mat from Laguna Brava (Salar de Atacama, Chile), a hypersaline lake with high arsenic concentration, using an array of conventional geochemical techniques, such as X-ray diffraction, SEM-EDX and Confocal Laser Scanning Microscopy (CLSM), combined with state-of-the-art high resolution scanning imaging techniques, including X-ray micro-fluorescence (μXRF) and X-ray Absorption Near Edge Structure (XANES) mapping. This experimental …
Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin
2009
Urania basin in the deep Mediterranean Sea houses a lake that is >100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulfide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers…
Cladosporinone, a new viriditoxin derivative from the hypersaline lake derived fungus Cladosporium cladosporioides
2015
A new cytotoxic viriditoxin derivative, cladosporinone (1), along with the known viriditoxin (2) and two viriditoxin derivatives (3 and 4) were obtained from the fungus C ladosporium cladosporioides isolated from the sediment of a hypersaline lake in Egypt. The structure of the new compound (1) was determined by 1D and 2D NMR measurements as well as by high-resolution ESIMS and electronic circular dichroism spectroscopy. All isolated compounds were studied for their cytotoxicity against the murine lymphoma cell line L5187Y and for their antibiotic activity against several pathogenic bacteria. Viriditoxin (2) was the most active compound in both bioassays. Compound 1 also exhibited strong cy…